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Abstract

A tractable method is presented for obtaining transformations to pseudo-Cartesian coordinates in locally flat pseudo-Riemannian
spaces. The procedure is based on the properties of parallel covector fields. As an illustration, the method is applied to obtain certain
transformations that arise in the Hamilton–Jacobi theory of separation of variables.
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1. Introduction

This paper describes an apparently new method for deriving transformations to pseudo-Cartesian coordinates from
general curvilinear coordinates in locally flat n-dimensional pseudo-Riemannian spaces. The method is based on the
theory of parallel covector fields developed by Eisenhart [3], in particular on the result which states that a space
admits n pointwise linearly independent parallel covector fields if and only if the Riemann curvature tensor vanishes.
This result together with some elementary properties of such covector fields provides the basis for an algorithm that
furnishes a straightforward procedure for the determination of transformations to pseudo-Cartesian coordinates.

Our method, which involves solving systems of linear differential equations, should be contrasted with the
apparently more straightforward approach based on the tensor transformation equations for the metric tensor. One
readily observes that this technique requires the solution of non-linear differential equations for the coordinate
transformation which are generally intractable.

The motivation for this work comes from Eisenhart’s moving frame method for determining all the orthogonally
separable coordinate webs for the Hamilton–Jacobi (HJ) equation for the geodesics and the Schrödinger equation
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in Euclidean and pseudo-Euclidean spaces by integration of the equations for a valence-two Killing tensor [1,2,4,
7–9]. The integration procedure yields expressions for the metric tensor and the Killing tensor in canonical separable
coordinates. Since the Hamiltonian of a physical system is given in position–momentum coordinates, an essential step
in the procedure for solving the equations of motion by the method of separation of variables is to find a coordinate
transformation from canonical pseudo-Cartesian coordinates to canonical separable coordinates. The components of
the general solution for the Killing tensor can then be obtained in terms of pseudo-Cartesian coordinates. The question
of whether the HJ equation is indeed solvable by the method of separation of variables can consequently be answered
by using the Invariant Theory of Killing Tensors which also facilitates the determination of the transformation to
separable coordinates [6,10,11]. For E2, E1,1 and E3, this transformation may be found by inspection by exploiting
the geometric properties of the orthogonally separable webs in each case. However, in the case of three-dimensional
Minkowski space E2,1 [5], where there are more than fifty different cases to consider, this method breaks down. Thus
we were led to search for a more systematic deductive method to find the required coordinate transformations.

The plan of the paper is as follows. In Section 2, we develop the theoretical basis and present our algorithm
for deducing the transformation to pseudo-Cartesian coordinates. In Section 3, we apply our procedure to a simple
example on the Euclidean plane and a less trivial example in three-dimensional Minkowski space.

2. Parallel covector fields on pseudo-Riemannian manifolds

Let (M, g) denote an n-dimensional real pseudo-Riemannian manifold. A covector field ω is said to be parallel or
covariantly constant (CC) if

∇ jωi = 0, (2.1)

where ωi are the components of ω with respect to a system of local coordinates onM. Indeed, if ω1
i and ω2

i are CC,
then

ω3
i = aω1

i + bω2
i (2.2)

is also CC, for any a, b ∈ R. Moreover, if the set {ω1
i , ω

2
i } is pointwise linearly independent, f, g ∈ C1(M) and

ω3
i = f ω1

i + gω2
i (2.3)

is CC, then the functions f and g are necessarily constant. It follows from (2.2) that the set of covariantly constant
covector fields onM forms a vector space which we shall denote by C(M). Clearly we must have

dim C(M) 6 n. (2.4)

Proposition 1. dim C(M) = n if and only if

R`i jk = 0, (2.5)

where R`i jk is the Riemann curvature tensor of the Levi-Civita connection on (M, g).

Proof. (H⇒) Let {ωαi }
n
α=1 be a basis of C(M). Any ωi ∈ C(M) may be expressed as ωi = cαωαi , where cα ,

α = 1, . . . , n, are arbitrary constants. By the Ricci identity applied to the basis covectors ωαi , we have

ωα` R`i jk = 0, (2.6)

for α = 1, . . . , n. Let x0 ∈M be an arbitrary point. We may choose local coordinates such that

ω̊α` = δα` . (2.7)

It follows from (2.6) and (2.7) that R̊α i jk = 0, for α = 1, . . . , n, i.e. the curvature tensor vanishes at x0 in the
special coordinate system for which (2.7) holds. Moreover, R̊`i jk = 0 in any system of coordinates containing x0. We
conclude that R`i jk = 0 at all points ofM since x0 was chosen arbitrarily.
(⇐H) If (2.5) holds, then (M, g) is locally flat and thus admits a system of local coordinates for which the Levi-Civita
connection coefficients satisfy Γ i

jk = 0. Given a covector ωi ∈ C(M), it follows from the definition of the covariant
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derivative that ∇ jωi = ωi, j . Thus, Eq. (2.1) reduces to ωi, j = 0 which has the general solution ωi = ci , i = 1, . . . , n,
where the ci are constant. We may write this general solution in the form ωi = cαωαi where ωαi = δαi . Clearly, the set
of covectors {ωαi }

n
α=1 is covariantly constant and linearly independent. Therefore, dim C(M) = n. �

Proposition 2. Let ω1
i , ω

2
j ∈ C(M) and define the scalar

Pαβ = gi jωαi ω
β
j , (2.8)

where α, β = 1, 2. Then, Pαβ is constant.

Proof. Immediate upon direct computation of Pαβ ,k . �

Assume now that (M, g) is locally flat which by Proposition 1 implies that dim C(M) = n. The inverse pseudo-
Riemannian metric g−1 clearly induces an inner product on C(M). Let {ωα}n

α=1 be a basis of C(M). Without loss of
generality, we may assume that none of the covectors ωα is null. By the Gram–Schmidt process and Proposition 2, we
may assume that the basis is quasi-orthonormal, i.e.

g−1(ωα,ωβ) = ηαβ , (2.9)

where

ηαβ = diag(−1, . . . ,−1, 1, . . . 1) (2.10)

and the number of minus signs in (2.10) is equal to the signature of g. Such a set of covectors defines a moving frame
onM (or on an open set ofM). We may write

ωα = ωαi dui , (2.11)

in terms of a local system of coordinates ui on M. By definition, ∇ jω
α
i = 0, since the ωα are assumed to be CC. It

thus follows that ∇[ jω
α
i] = ∂[ jω

α
i] = 0, that is

dωα = 0. (2.12)

Thus, the covectors ωα are closed. By the converse of Poincaré’s lemma, the covectors ωα are locally exact, which
implies the existence of n functions xα , defined at least locally onM, such that

ωα = dxα. (2.13)

It follows from (2.11) that xα,i = ωαi and that det(xα,i ) 6= 0. By (2.9), the metric onM may be expressed as

ds2
= ηαβ ωα � ωβ . (2.14)

Thus, by (2.13), we have

ds2
= ηαβ dxα dxβ , (2.15)

which by (2.10) implies that the xα define a set of pseudo-Cartesian coordinates on (M, g).
The theoretical basis is now in place for the determination of the transformation to a system of pseudo-Cartesian

coordinates xα from a given system of coordinates ui on a locally flat space (M, g). We summarize the procedure
below and present two examples in the next section.

(1) For the given components gi j of the pseudo-Riemannian (flat) metric with respect to the coordinate system ui ,
compute the Christoffel symbols of the second kind.

(2) Use the Christoffel symbols obtained in Step 1 to solve and obtain the general solution of (2.1) for the components
of the general CC covector field. This step amounts to solving a linear system of PDEs.

(3) From the general solution obtained in Step 2 which involves n arbitrary constants, extract a set of n linearly
independent CC covector fields {ω̂

α
}
n
α=1.

(4) Use the Gram–Schmidt process to construct from the set {ω̂
α
}
n
α=1 a new set {ωα}n

α=1 which is a quasi-orthonormal
basis satisfying (2.9).
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(5) Solve the equations dxα = ωα using the results from Step 4 to obtain n “potential functions” xα , which define the
transformation from pseudo-Cartesian coordinates xα to the given coordinate system ui .

3. Applications

We now illustrate the procedure developed in the previous section by deriving a system of pseudo-Cartesian
coordinates xα from a given (flat) metric with respect to local coordinates ui for a case on the Euclidean plane E2 and
a case in three-dimensional Minkowski space E2,1. Both coordinate systems have the property that the respective HJ
equations for the geodesics are solvable by separation of variables.

Example 1. Consider the flat metric in E2 with respect to the coordinates ui
= (u, v) given by

ds2
= a2(cosh2 u − cos2 v)(du2

+ dv2), (3.1)

where 0 < u < ∞, 0 < v < 2π and a > 0 is a constant. The Christoffel symbols of the metric (3.1) are

Γ u
uu = −Γ u

vv = Γ v
uv =

cosh u sinh u

cosh2 u − cos2 v
,

Γ v
vv = −Γ v

uu = Γ u
uv =

cos v sin v

cosh2 u − cos2 v
.

(3.2)

Expanding Eq. (2.1) using (3.2) yields

(cosh2 u − cos2 v)ωu,u = −(cosh2 u − cos2 v)ωv,v = ωu cosh u sinh u − ωv cos v sin v,

(cosh2 u − cos2 v)ωu,v = −(cosh2 u − cos2 v)ωv,u = ωv cosh u sinh u + ωu cos v sin v.
(3.3)

Using the method of undetermined coefficients, the general solution of (3.3) is found to be

ω|c1,c2 = ωu du + ωv dv, (3.4)

where

ωu = c1 sinh u cos v + c2 cosh u sin v,
ωv = −c1 cosh u sin v + c2 sinh u cos v

(3.5)

and c1 and c2 are arbitrary constants of integration. As expected from Proposition 2, the following scalar is constant:

P = g−1 (
ω|c1,c2 ,ω|k1,k2

)
= a−2(c1k1 + c2k2). (3.6)

As ηi j = diag(1, 1) in E2, it is immediate from (3.6) that an orthonormal basis of C(E2) with respect to the metric
(3.1) is {ω1,ω2

} where

ω1
= ω|a,0 = a sinh u cos v du − a cosh u sin v dv,

ω2
= ω|0,a = a cosh u sin v du + a sinh u cos v dv.

(3.7)

To complete the calculation, we compute the potential functions x and y satisfying dx = ω1 and dy = ω2, respectively.
A straightforward integration yields

x = a cosh u cos v, y = a sinh u sin v, (3.8)

modulo an additive constant. Eq. (3.8) gives the familiar transformation from Cartesian coordinates to
elliptic–hyperbolic coordinates defined on the Euclidean plane.

Example 2. Consider the flat metric in three-dimensional Minkowski space E2,1 with respect to the coordinates
ui

= (u, v, w) given by

ds2
= −

(u2
− v2)(w2

− u2)

u2 du2
+
(u2

− v2)(w2
− v2)

v2 dv2
+
(w2

− u2)(w2
− v2)

w2 dw2, (3.9)
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for 0 < v2 < u2 < w2. The non-vanishing Christoffel symbols of (3.9) are

Γ u
ww = −

u3(w2
− v2)

w2(u2 − v2)(w2 − u2)
, Γ u

vv =
u3(w2

− v2)

v2(u2 − v2)(w2 − u2)
,

Γ u
uu =

w2v2
− u4

u(u2 − v2)(w2 − u2)
, Γ u

uv = −
v

u2 − v2 , Γ u
wu =

w

w2 − u2

(3.10)

with Γ v
jk and Γw

jk obtained from (3.10) by cycling over (u, v, w). Using these Christoffel symbols, we find that the
general solution of (2.1) is

ω|c0,c1,c2 = ωu du + ωv dv + ωw dw, (3.11)

where

ωu = c0u + c1vw + c2

( v
w

+
w

v
−
vw

u2

)
,

ωv = c0v + c1wu + c2

(w
u

+
u
w

−
wu
v2

)
,

ωw = c0w + c1uv + c2

(u
v

+
v

u
−

uv
w2

) (3.12)

and c0, c1 and c2 are arbitrary constants. Computing the scalar

P = g−1 (
ω|c0,c1,c2 ,ω|k0,k1,k2

)
= c0k0 − 2(c1k2 + c2k1), (3.13)

and using the Gram–Schmidt procedure in conjunction with (3.11)–(3.13), we find that

ω0
= ω|0, 1

2 ,
1
2
, ω1

= ω|0,− 1
2 ,

1
2
, ω2

= ω|1,0,0, (3.14)

defines a quasi-orthonormal basis of C(E2,1) with respect to the metric (3.9), such that g−1(ωα,ωβ) = ηαβ , where
ηαβ = diag(−1, 1, 1). Finally, solving the equations dxα = ωα for the potential functions xα = (t, x, y) using (3.14)
yields the desired coordinate transformation

t =
1
2

(uv
w

+
vw

u
+
wu
v

)
+

1
2

uvw,

x =
1
2

(uv
w

+
vw

u
+
wu
v

)
−

1
2

uvw,

y =
1
2
(u2

+ v2
+ w2),

(3.15)

defined up to additive constants.
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